Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.392
Filtrar
2.
Opt Lett ; 49(8): 1929-1932, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621043

RESUMO

Elliptical shape microfiber enables many higher order modes compared with a circular microfiber. The small difference in the optical path length among many modes enabled multi-resonance peaks with high contrast in Mach-Zehnder (MZI) interferometers, which allows a large dynamic range and minimum detection sensitivity for broadband ultrasound sensing. In this paper, we present the design and fabrication of an ultra-compact elliptical-silica microfiber utilizing off-axis flame-drawing for ultrasound detection. The narrow transmission peak showed high contrast for ultrasensitive ultrasound wave detection. With a major-axis diameter of 6.25 µm, the elliptical-silica microfiber sensor exhibits a broadband ultrasound frequency response spanning from 20 kHz to 38.5 MHz. Furthermore, it achieves a signal-to-noise ratio (SNR) of up to 80 dB at 1 MHz, which is the resonance frequency of the microfiber and the linear response under driving voltages of 3-10 V for the PZT ultrasound generator. This low-cost microfiber sensor offers exceptional sensitivity across a broad ultrasonic bandwidth response, making it an ideal choice for nondestructive testing (NDT) and medical imaging applications. Its compact size and immunity to electric and magnetic fields further enhance its utility in various environments.

3.
Chem Commun (Camb) ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625567

RESUMO

Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.

4.
Biochem Pharmacol ; 224: 116208, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38621423

RESUMO

Homeobox B9 (HOXB9) has been shown to play a critical role in several tumors. However, the precise biological mechanisms and functions of HOXB9 in osteosarcoma remain largely unknown. In this study, we found that HOXB9 was increased upon glucose starvation. Elevated HOXB9 suppressed osteosarcoma cell death and supported cell growth and migration under glucose starvation. Further mechanistic studies demonstrated that HOXB9 directly bound to the promoter of secreted phosphoprotein 1 (SPP1) and transcriptionally upregulated SPP1 expression which then led cell death decrease and cell growth increase under glucose deprivation environment. Clinically, HOXB9 was significantly upregulated in osteosarcoma compared with normal tissues and increase of HOXB9 expression was positively associated with the elevation of SPP1 in osteosarcoma. Overall, our study illustrates that HOXB9 contributes to malignancy in osteosarcoma and inhibits cell death through transcriptional upregulating SPP1 under glucose starvation.

5.
Huan Jing Ke Xue ; 45(5): 2871-2880, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629549

RESUMO

Presently, the improvement of soil organic matter is the basis to ensure food security, but the accumulation and transformation characteristics of soil phosphorus (P) as affected by organic matter remain unclear. The accumulation, transformation, and migration characteristics of soil P in different soil layers of vegetable fields were researched under the application of organic materials. Six treatments were set up in the experiment:control (no fertilization), traditional fertilizer application by farmers, biochar, chicken manure, food waste, and straw application. Available phosphorus (Olsen-P), water-soluble phosphorus (CaCl2-P) content, soil phosphorus forms, soil organic matter (SOM), and pH were determined during the pepper harvest period. In the 0-5 cm and 5-10 cm soil layers, the available phosphorus content of traditional fertilization of farmers was higher, and the available phosphorus content of the four organic materials was in the order of straw > biochar > chicken manure > food waste. Compared to that with food waste, the straw and biochar treatments increased soil available phosphorus by 59.6%-67.3% and 29.1%-36.9%, respectively. The straw treatment could easily enhance the soil labile P pool, and soil labile P in the 0-5 cm soil layer increased by 47.3% and 35.1% compared with that under the chicken manure and food waste treatments, respectively. With the increase in soil depth, the proportion of available phosphorus in the chicken manure treatment decreased the least, and available phosphorus of the 20-30 cm soil layer accounted for 55.9% of the topsoil layer but only accounted for 16.0%-34.0% under treatment with the other three materials. Compared with that under the traditional fertilization of farmers, the pH significantly increased by 0.18-0.36 units after the application of organic fertilizer, and the pH of the chicken manure and food waste treatments was significantly higher than that of biochar and straw (P < 0.05). SOM content under the biochar treatment significantly increased by 7.7%-17.6% compared to that under the other three organic materials. Among the four organic materials, the straw treatment boosted the labile P pool the most, which was conducive to the rapid increase in plant-available P. Phosphorus was most likely to migrate downward under the chicken manure treatment. In the field management based on soil fertility enhancement, the application of biochar could not only improve soil pH and SOM but also avoid excessive accumulation of phosphorus in the surface layer, which decreases environmental risks.


Assuntos
Agricultura , Carvão Vegetal , Eliminação de Resíduos , Animais , Fósforo , Verduras , Fertilizantes , Esterco , Solo/química , Galinhas
6.
Huan Jing Ke Xue ; 45(5): 2983-2994, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629559

RESUMO

Taking a city in Guangdong Province as the research area, the concentration and spatial distribution characteristics of heavy metals in the surface soil were studied to clarify the situation of soil heavy metal pollution and priority control factors, providing basic data for the prevention and control of soil heavy metal pollution in the city. The content characteristics of heavy metals in 221 soil samples in the city were analyzed, and the potential health risk assessment and source analysis were carried out through the Monte Carlo model, the potential health risk assessment (HRA) model, and the PMF receptor model. It was found that heavy metals ω(As), ω(Hg), ω(Cd), ω(Pb), ω(Cr), ω(Cu), ω(Ni), and ω(Zn) in the soil of the city were 18.16, 0.43, 1.46, 68.57, 98.34, 64.19, 26.53, and 257.32 mg·kg-1, respectively, with a moderate to high degree of variation. Except for Ni concentration, the soil concentrations of other heavy metal elements exceeded the background values of soil in Guangdong Province to a certain extent, and the concentrations of Cd and Zn exceeded the national secondary standards, resulting in severe heavy metal pollution; the main sources of heavy metals were industrial sources, and natural parent materials, lead battery manufacturing, transportation, artificial cultivation, and pesticide and fertilizer inputs also had an undeniable impact on the accumulation of heavy metals in the soil. Heavy metals in the soil had a certain degree of tolerable carcinogenic health risk for both children and adults, whereas non-carcinogenic risks could be ignored. The potential health risk of children was greater than that of adults, and the main exposure route was through oral intake. The input sources of pesticides and fertilizers and As should be the main controlling factors for the health risks of heavy metals in the city's soil, followed by mixed sources and Cr. There were differences in the spatial distribution characteristics and relative pollution levels of heavy metals, and it is necessary to deepen zoning monitoring and control, strengthen soil pollution prevention and control, and reduce human input of heavy metals in soil.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Monitoramento Ambiental , Solo , Cádmio/análise , Poluentes do Solo/análise , Metais Pesados/análise , Medição de Risco , China
7.
Med ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38608708

RESUMO

BACKGROUND: Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia . METHODS: We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection. The droplet can sense the pH change caused by sperm's respiration products and then transforms into a hydrogel to be selected out. FINDINGS: The BLASTO-chip system can select biochemically active sperm with an accuracy of over 90%, and its selection efficiency can be flexibly tuned by nearly 10-fold. All the substances in the system were proven to be biosafe via evaluating mice fertilization and offspring health. Live sperm down to 1% could be enriched by over 76-fold to 76%. For clinical application to patients with severe/total asthenozoospermia, the BLASTO-chip could select live sperm from human semen samples containing 10% live but 100% immotile sperm. The rates of fertilization, cleavage, early embryos, and blastocysts were drastically elevated from 15% to 70.83%, 10% to 62.5%, 5% to 37.5%, and 0% to 16.67%, respectively. CONCLUSIONS: The BLASTO-chip represents a real biochemical-level technology for sperm selection that is completely independent of sperm's motility. It can be a powerful tool in ART, especially for patients with severe/total asthenozoospermia. FUNDING: This work was funded by the Ministry of Science and Technology of China, the Ministry of Education of China, and the Shenzhen-Hong Kong Hetao Cooperation Zone.

8.
World Neurosurg ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608816

RESUMO

PURPOSE: To propose a novel surgical strategy-thoracic anterior controllable ante-displacement fusion (TACAF) to treat mT-OPLL, and investigated its safety and efficacy. METHODS: Between January 2019 and December 2021, a total of 49 patients with thoracic myelopathy due to mT-OPLL were surgically treated with TACAF were retrospectively reviewed. Patients' demographic data, radiological parameters, and surgery-related complications, m-JOA and VAS scores, thoracic kyphosis (TK), kyphosis angle in fusion area (FSK), thoracic curvature, spinal cord curvature and curvature of curved rod in surgical region, diameter and area of the spinal cord at the most compressed level were included. RESULTS: All patients acquired satisfactory recovery of neurological function and overall complication rate is low at the final follow up. The mean m-JOA of the two groups respectively was 3.74±2.05, 3.67±1.95 before surgery, and 9.97±0.83, 9.80±0.68at the final followed up, with the recovery rate of 84.26±14.20,82.79±10.35%, as to VA Scores. the mean FSK was 34.50±4.46,35.33±3.44before surgery, and was restored to 20.97±5.70,22.93±6.34at the final followed up respectively, as to mean TK. (P<0.05). Spinal cord curvature was improved from 34.12±3.59,33.93±3.45before surgery to 19.47±3.53,18.80±3.17at the final follow-up respectively, as to thoracic curvature (P<0.05), and In addition, the area and diameter of the spinal cord was also significantly improved at the final follow up (all P<0.05). The curvature of the thoracic pulp and thoracic vertebra is closely related to the curvature of the rod. There was no statistically significant difference in the incidence of the pelvis and the slope value of the sacrum. CONCLUSIONS: This strategy provides a novel solution for the treatment of mT-OPLL with favorable recovery of neurological function, the tension of spinal cord, and less complications.

9.
Plant Dis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616390

RESUMO

Potentilla anserina L. has an abundance of bioactive compounds and is widely recognized for its diverse applications in traditional medicine and as a food. In August 2023, typical symptoms of anthracnose were observed in 80% of P. anserina plants in Harbin, China. Symptoms, characterized by reddish-brown spots, tend to occur more frequently on leaves closer to the ground. They initially appeared as oval or irregular circles, measuring 1 to 3 mm in diameter, and later merged into larger patches surrounded by chlorotic areas on the leaves. Twenty leaves exhibiting characteristic symptoms were sampled. Each leaf was sectioned into 5×5 mm pieces at the interface between the diseased and healthy tissues. The sections were disinfected sequentially with 75% ethanol for 30 s, followed by 1% NaClO for 2 min, rinsed three times in sterilized distilled water. Post air-drying, samples were cultured on potato dextrose agar (PDA) plates and incubated at 26°C in the dark for 5 d, yielding nine morphologically similar single-spore isolates (JTC1 to JTC9). The colonies initially displayed gray aerial mycelia, becoming pale brown, accompanied by numerous black microsclerotia. The acervuli appeared black, protruded from the surface of the medium, and were adorned with dark brown setae. Setae (n=50) ranged from 58.4 to 188.2 µm in length, appearing dark brown to black, with smooth walls, rounded tips, swollen bases, and containing 1 to 4 septa. The conidia were hyaline, aseptate, cylindrical to spindle-shaped, with blunt and rounded ends, measuring 13.7 to 18.3 µm in length and 3.4 to 4.3 µm in width (n=50). Morphological analysis indicated a close affinity with Colletotrichum americae-borealis (Damm et al. 2014). For molecular identification, genomic DNA was extracted from three representative isolates (JTC1, JTC2, and JTC3).The ITS, HIS3,GAPDH, and ACT genes were amplified and sequenced using the primers described previously by Damm et al. (2014). The sequences were submitted to GenBank (ITS: PP338190 to PP338192; HIS3: PP355770 to PP355772; GAPDH: PP355773 to PP355775; ACT: PP355776 to PP355778). BLAST analysis showed 99 to 100% identity with C. americae-borealis type strain CBS 136232 (GenBank accessions: KM105224, KM105364, KM105579, and, KM105434, respectively). Multigene phylogenetic analysis positioned the three isolates close to C. americae-borealis. Pathogenicity tests were performed twice on 6-week-old P. anserina seedlings (cv. Qinghai Juema 1) in a greenhouse. A conidial suspension of the JTC1 isolate (1×105 conidia/ml) was sprayed applied to ten pots, each containing two seedlings, and the plants in the control pots were sprayed with sterile distilled water. Two weeks after inoculation under greenhouse conditions (26/22°C day/night temperature, 12-hour photoperiod, 90% relative humidity), the inoculated seedlings exhibited brown spots and necrotic lesions similar to those observed in the field, C. americae-borealis was successfully reisolated from these symptomatic tissues. To the best of our knowledge, this is the first report of C. americae-borealis causing leaf spot on P. anserina in China. Anthracnose caused by C. americae-borealis is associated with leaf spot disease in oats (Wang et al. 2022), alfalfa (Li et al. 2021), and licorice (Lyu et al.2020). However, C. americae-borealis poses a significant threat to P. anserina in China as well, highlighting the urgent need to develop effective disease management strategies.

10.
Adv Mater ; : e2403329, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625749

RESUMO

The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, we report that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which showed opposite and multi-stimuli responsive CPL signals. Specifically, NIHis displayed assembly-induced CPL from the polymorphic keto tautomer, which became predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals could be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical external stimuli including grinding, acid fuming and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol was developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering. This article is protected by copyright. All rights reserved.

11.
Front Immunol ; 15: 1384270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576620

RESUMO

With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Transtornos Mentais , Microbiota , Humanos , Encéfalo/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Transtornos Mentais/metabolismo
12.
Front Immunol ; 15: 1377270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585268

RESUMO

Introduction: Signal peptide peptidase (SPP) is an intramembrane protease involved in a variety of biological processes, it participates in the processing of signal peptides after the release of the nascent protein to regulate the endoplasmic reticulum associated degradation (ERAD) pathway, binds misfolded membrane proteins, and aids in their clearance process. Additionally, it regulates normal immune surveillance and assists in the processing of viral proteins. Although SPP is essential for many viral infections, its role in silkworms remains unclear. Studying its role in the silkworm, Bombyx mori , may be helpful in breeding virus-resistant silkworms. Methods: First, we performed RT-qPCR to analyze the expression pattern of BmSPP. Subsequently, we inhibited BmSPP using the SPP inhibitor 1,3-di-(N-carboxybenzoyl-L-leucyl-L-leucylaminopropanone ((Z-LL)2-ketone) and downregulated the expression of BmSPP using CRISPR/Cas9 gene editing. Furthermore, we assessed the impact of these interventions on the proliferation of Bombyx mori nucleopolyhedrovirus (BmNPV). Results: We observed a decreased in the expression of BmSPP during viral proliferation. It was found that higher concentration of the inhibitor resulted in greater inhibition of BmNPV proliferation. The down-regulation of BmSPP in both in vivo and in vitro was found to affect the proliferation of BmNPV. In comparison to wild type silkworm, BmSPPKO silkworms exhibited a 12.4% reduction in mortality rate. Discussion: Collectively, this work demonstrates that BmSPP plays a negative regulatory role in silkworm resistance to BmNPV infection and is involved in virus proliferation and replication processes. This finding suggests that BmSPP servers as a target gene for BmNPV virus resistance in silkworms and can be utilized in resistance breeding programs.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/genética , Edição de Genes , Regulação para Baixo
13.
Ecotoxicol Environ Saf ; 276: 116270, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574645

RESUMO

Mycotoxin contamination has become a major food safety issue and greatly threatens human and animal health. Patulin (PAT), a common mycotoxin in the environment, is exposed through the food chain and damages the gastrointestinal tract. However, its mechanism of enterotoxicity at the genetic and metabolic levels remains to be elucidated. Herein, the intestinal histopathological and biochemical indices, transcriptome, and metabolome of C57BL/6 J mice exposed to different doses of PAT were successively assessed, as well as the toxicokinetics of PAT in vivo. The results showed that acute PAT exposure induced damaged villi and crypts, reduced mucus secretion, decreased SOD and GSH-Px activities, and enhanced MPO activity in the small intestine and mild damage in the colon. At the transcriptional level, the genes affected by PAT were dose-dependently altered in the small intestine and fluctuated in the colon. PAT primarily affected inflammation-related signaling pathways and oxidative phosphorylation in the small intestine and immune responses in the colon. At the metabolic level, amino acids decreased, and extensive lipids accumulated in the small intestine and colon. Seven metabolic pathways were jointly affected by PAT in two intestinal sites. Moreover, changes in PAT products and GST activity were detected in the small intestinal tissue but not in the colonic tissue, explaining the different damage degrees of the two sites. Finally, the integrated results collectively explained the toxicological mechanism of PAT, which damaged the small intestine directly and the colon indirectly. These results paint a clear panorama of intestinal changes after PAT exposure and provide valuable information on the exposure risk and toxic mechanism of PAT.

14.
New Phytol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563391

RESUMO

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.

16.
Appl Opt ; 63(9): 2352-2361, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38568591

RESUMO

Improving the spectrum efficiency (SE) is an effective method to further enhance the data rate of bandwidth-limited underwater wireless optical communication (UWOC) systems. Non-orthogonal frequency-division multiplexing (NOFDM) with a compression factor of 0.5 can save half of the bandwidth without introducing any inter-carrier-interference (ICI) only if the total number of subcarriers is large enough, and we termed it as half-spectrum OFDM (HS-OFDM). To the best of our knowledge, this is the first reported work on a closed-form HS-OFDM signal in the discrete domain from the perspective of a correlation matrix. Due to the special mathematical property, no extra complex decoding algorithm is required at the HS-OFDM receiver, making it as simple as the conventional OFDM receiver. Compared with traditional OFDM, HS-OFDM can realize the same data rate, but with a larger signal-to-noise ratio (SNR) margin. To fully use the SNR resource of the communication system, we further propose a digital power division multiplexed HS-OFDM (DPDM-HS-OFDM) scheme to quadruple the SE of conventional OFDM for the bandwidth-starved UWOCs. The experimental results show that HS-OFDM can improve the receiver sensitivity by around 4 dB as opposed to conventional 4QAM-OFDM with the same data rate and SE. With the help of the DPDM-HS-OFDM scheme, the data rate of multi-user UWOC can reach up to 4.5 Gbps under the hard-decision forward error correction (HD-FEC) limit of a bit error rate (BER) of 3.8×10-3. Although there is some performance degradation in comparison with single-user HS-OFDM, the BER performance of multi-user DPDM-HS-OFDM is still superior to that of conventional single-user 4QAM-OFDM. Both single-user HS-OFDM and multi-user DPDM-HS-OFDM successfully achieve 2 Gbps/75 m data transmission, indicating that the DPDM-HS-OFDM scheme is of great importance in bandwidth-limited UWOC systems and has guiding significance to underwater wireless optical multiple access.

17.
Hum Reprod ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604654

RESUMO

STUDY QUESTION: Does severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the frozen-thawed embryo transfer (FET) cycle affect embryo implantation and pregnancy rates? SUMMARY ANSWER: There is no evidence that SARS-CoV-2 infection of women during the FET cycle negatively affects embryo implantation and pregnancy rates. WHAT IS KNOWN ALREADY: Coronavirus disease 2019 (COVID-19), as a multi-systemic disease, poses a threat to reproductive health. However, the effects of SARS-CoV-2 infection on embryo implantation and pregnancy following fertility treatments, particularly FET, remain largely unknown. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study, included women who underwent FET cycles between 1 November 2022 and 31 December 2022 at an academic fertility centre. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women who tested positive for SARS-CoV-2 during their FET cycles were included in the COVID-19 group, while those who tested negative during the same study period were included in the non-COVID-19 group. The primary outcome was ongoing pregnancy rate. Secondary outcomes included rates of implantation, biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy. Multivariate logistic regression models were applied to adjust for potential confounders including age, body mass index, gravidity, vaccination status, and endometrial preparation regimen. Subgroup analyses were conducted by time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) and by level of fever (no fever, fever <39°C, or fever ≥39°C). MAIN RESULTS AND THE ROLE OF CHANCE: A total of 243 and 305 women were included in the COVID-19 and non-COVID-19 group, respectively. The rates of biochemical pregnancy (58.8% vs 62.0%, P = 0.46), clinical pregnancy (53.1% vs 54.4%, P = 0.76), implantation (46.4% vs 46.2%, P = 0.95), early pregnancy loss (24.5% vs 26.5%, P = 0.68), and ongoing pregnancy (44.4% vs 45.6%, P = 0.79) were all comparable between groups with or without infection. Results of logistic regression models, both before and after adjustment, revealed no associations between SARS-CoV-2 infection and rates of biochemical pregnancy, clinical pregnancy, early pregnancy loss, or ongoing pregnancy. Moreover, neither the time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) nor the level of fever (no fever, fever <39°C, or fever ≥39°C) was found to be related to pregnancy rates. LIMITATIONS, REASONS FOR CAUTION: The retrospective nature of the study is subject to possible selection bias. Additionally, although the sample size was relatively large for the COVID-19 group, the sample sizes for certain subgroups were relatively small and lacked adequate power, so these results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS: The study findings suggest that SARS-CoV-2 infection during the FET cycle in females does not affect embryo implantation and pregnancy rates including biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy, indicating that cycle cancellation due to SARS-CoV-2 infection may not be necessary. Further studies are warranted to verify these findings. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2023YFC2705500, 2019YFA0802604), National Natural Science Foundation of China (82130046, 82101747), Shanghai leading talent program, Innovative research team of high-level local universities in Shanghai (SHSMU-ZLCX20210201, SHSMU-ZLCX20210200, SSMU-ZLCX20180401), Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Clinical Research Innovation Cultivation Fund Program (RJPY-DZX-003), Science and Technology Commission of Shanghai Municipality (23Y11901400), Shanghai Sailing Program (21YF1425000), Shanghai's Top Priority Research Center Construction Project (2023ZZ02002), Three-Year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.1-36), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161413). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.

18.
Chem Biodivers ; : e202400507, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606561

RESUMO

Three new C10 and C12 aliphatic δ-lactones (1-3), three new fatty acid methyl esters (4-6), and eight known compounds (7-14) were isolated from the marine Aureobasidium sp. LUO5. Their structures were established by detailed analyses of the NMR, HRESIMS, optical rotation, and ECD data. All isolates were tested for their inhibitory effects on nitric oxide production in LPS-induced BV-2 cells. Notably, compound 4 displayed the strongest inhibitory effect with the IC50 value of 120.3 nM.

19.
Front Microbiol ; 15: 1362296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591035

RESUMO

Introduction: Arbuscular mycorrhizal fungi (AMF) have been demonstrated their ability to enhance the arsenic (As) tolerance of host plants, and making the utilization of mycorrhizal plants a promising and practical approach for remediating As-contaminated soils. However, comprehensive transcriptome analysis to reveal the molecular mechanism of As tolerance in the symbiotic process between AMF and host plants is still limited. Methods: In this study, transcriptomic analysis of Gossypium seedlings was conducted with four treatments: non-inoculated Gossypium under non-As stress (CK0), non-inoculated Gossypium under As stress (CK100), F. mosseae-inoculated Gossypium under non-As stress (FM0), and F. mosseae-inoculated Gossypium under As stress (FM100). Results: Our results showed that inoculation with F. mosseae led to a reduction in net fluxes of Ca2+, while increasing Ca2+ contents in the roots and leaves of Gossypium under the same As level in soil. Notably, 199 and 3129 differentially expressed genes (DEGs) were specially regulated by F. mosseae inoculation under As stress and non-As stress, respectively. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation and enrichment analyses, we found that under As stress, F. mosseae inoculation up-regulated a significant number of genes related to the Ca2+ signaling pathway genes, involved in cellular process, membrane part, and signal transduction. This suggests a potential role in mitigating As tolerance in Gossypium seedlings. Furthermore, our analysis identified specific DEGs in transcription factor families, including ERF, MYB, NAC, and WRKY, that were upregulated by F. mosseae inoculation. Conversely, MYB and HB-other were down-regulated. The ERF and MYB families exhibited the highest number of up- and down-regulated DEGs, respectively, which were speculated to play an important role in alleviating the As toxicity of Gossypium. Discussion: Our findings provided valuable insights into the molecular theoretical basis of the Ca2+ signaling pathway in improving As tolerance of mycorrhizal plants in the future.

20.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591083

RESUMO

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...